Session 5

MEDICAL IMAGING PHYSICS MADE EASY

SUMMARY 1

By Dr. Ahmad Mokhtar Abodahab

Components of Atom

Neutron

no charge

AND DURING LA LAUGH

MakeAGIF.com

TYPES OF RADIATION

<u>Smaller</u> Wave length = <u>More Penetration</u> ability <u>Wave length</u> is inversely proportional to <u>Frequency</u>

X RAY :

- Name : X i.e. Unknown
- **Type** : Electromagnetic wave
- Wavelength : 0.01 : 10 nanometer
- High penetration ability
- Radiographic characters.

1 mm = 1 Million nano

and into **heat (99%).**

kV is controlling **X** ray penetration

عوامل التعرض Exposure Factors:

هي العوامل التي يمكن من خلالها التحكم بالأشعة الخارجة من إنبوبة الأشعة وهي ثلاث عوامل:

- الكيلو فولت KV: هو فرق الجهد بين الكاثود والأنود خلال إنتاج الأشعة. وهو يتحكم بطاقة الأشعة السينية فكلما زاد الكيلوفولت زادت طاقة الأشعة. وكلما زادت طاقة الأشعة السينية زادت قدرتها على إختراق الأجسام.
- الميلي أمبير mA: كلما زاد الميلي أمبير زادت الإلكترونات المنبعثة من الكاثود إلى الأنود مما يؤدي إلى زيادة كمية الأشعة السينية.
- 3. مدة إنتاج الأشعة: فكلما زادت مدة إنتاج الأشعة زادت معها كمية الأشعة وهي تقاس بالثانية.

تقاس بالثانية.

- X ray production Interaction may be of (3 Types)
 - \succ interaction with K shell \rightarrow Line spectrum characteristic X

ray

➢ Interaction with nucleus →Continuous spectrum,

Bremsstrahlung,

> Electron immediately & completely stopped.

Characteristic x-ray production

е

Photoelectron

Diverted

e

1. Bombarding electron strikes k shell (or other shell) electron electron 2. Bombarding electron diverted. Electron that's hit ejected as a photoelectron and absorbed

3. Outer shell electron moves down to fill the ejected electron's space. The energy from this is released as a characteristic energy photon

Characteristic

x-ray

Bremsstrahlung X-ray production

HALF-VALUE LAYER (HVL)

Ο

• the thickness of material that \rightarrow reduce the intensity

of a X ray beam \rightarrow to <u>one-half of its original value</u>.

LINEAR ATTENUATION COEFFICIENT (µ)

Percent of attenuated photons / Thickness of matter

X RAY IN THE MATTER

What's occur ?

B Process <u>2</u> Scatter & <u>1</u> Absorption

Types Of Filtration ?

Inherent & Added Filtration

• Inherent :

• <u>Added</u> or <u>Additional</u> <u>filtration</u>:

* COMPENSATING OR WEDGE FILTER

ABSORBED DOSE

• Effects of ionizing radiations →correlated with the energy deposited as **ionization** and **excitation** of atoms of the material.

• Absorbed dose: energy deposited per unit mass of the material (in joules / Kg).

•Absorbed dose is :

- the energy deposited in a material from the interaction of ionizing radiations.
- expressed in the unit gray (Gy).
- commonly measured using ionization chambers.

Summary – Radiation Quantities & Units

Quantity	Equation	Medium	Type of Radiation	SI unit	Classical unit	Relation
Activity	A=dN/dt	Any medium	Any radiation	Bq (dps)	Ci	1 Ci = 3.7×10 ¹⁰ Bq
Absorbed dose	D = dE/dm	Any medium	Any radiation	Gy (J/kg)	Rad 1Rad=100 ergs/g	1 Gy=100 Rad
Equivalent dose	H = D×W _R	Living tissue	Radiation dependent	Sv	rem	1 Sv = 100 rem
Effective Dose	$E = H \times W_T$	Whole body		Sv	rem	1 Sv = 100 rem
Collective effective dose	S = E _i N _i			man-Sv	man-rem	
Exposure	X = dQ/dm	Air	Χ, γ	C/kg	Roentgen, R	1 R= 2.58×10 ⁻⁴ C/kg

DOSIMETER PRINCIPLES

- Thermal effect \rightarrow Non practical
- **Ionizing changes** in air & matter \rightarrow Ionizing chamber
- Photographic changes \rightarrow Photographic badges
- Luminescence

- **X-rays** and gamma rays cause → luminescence in certain materials,
- It can be used for **image formation** and also for **radiation measurement.**

LUMINESCENCE

The process of a material absorbs energy from an external source and reemits it in the form of visible light.

- External energy source may be : chemical, biological and physical
- in radiology we are concerned only with term **photoluminescencemay**.
- Luminescence can be divided into **two types**:
- **fluorescence**, which is (more or less) the emission of light is directly following energy input
- **phosphorescence**, which describes <u>**delayed light emission</u></u> referred to as afterglow.</u>**

NICE WEBSITES IN BASICS OF RADIOLOGY

- <u>https://radiologykey.com/</u>
- o <u>https://radclass.net/</u>
- o <u>https://www.startradiology.com/</u>
- <u>https://www.radiologymasterclass.co.uk/</u>
- o https://www.radiologycafe.com/
- o <u>http://xrayphysics.com/</u>
- o <u>https://radiopaedia.org/</u>
- <u>https://www.enec.gov.ae/</u>

Thank You

A. M. Abodahab Oct 2020